Reference: Wang PI and Marcotte EM (2010) It's the machine that matters: Predicting gene function and phenotype from protein networks. J Proteomics 73(11):2277-89

Reference Help

Abstract


Increasing knowledge about the organization of proteins into complexes, systems, and pathways has led to a flowering of theoretical approaches for exploiting this knowledge in order to better learn the functions of proteins and their roles underlying phenotypic traits and diseases. Much of this body of theory has been developed and tested in model organisms, relying on their relative simplicity and genetic and biochemical tractability to accelerate the research. In this review, we discuss several of the major approaches for computationally integrating proteomics and genomics observations into integrated protein networks, then applying guilt-by-association in these networks in order to identify genes underlying traits. Recent trends in this field include a rising appreciation of the modular network organization of proteins underlying traits or mutational phenotypes, and how to exploit such protein modularity using computational approaches related to the internet search algorithm PageRank. Many protein network-based predictions have recently been experimentally confirmed in yeast, worms, plants, and mice, and several successful approaches in model organisms have been directly translated to analyze human disease, with notable recent applications to glioma and breast cancer prognosis.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Review
Authors
Wang PI, Marcotte EM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence