Reference: Didichenko SA, et al. (1991) Ribosome-bound EF-1 alpha-like protein of yeast Saccharomyces cerevisiae. Eur J Biochem 198(3):705-11

Reference Help

Abstract


The SUP2 (SUP35) omnipotent suppressor gene encodes the EF-1 alpha-like polypeptide, intimately involved in the control of translational ambiguity in the yeast Saccharomyces cerevisiae. The present study is devoted to the immunological characterization of the Sup2 protein. The SUP2 gene was fused to the Escherichia coli lacZ gene and a polyclonal antibody against the corresponding Sup2--beta-galactosidase hybrid protein was obtained. This antibody identified a 79-kDa protein that was absent in those cells where the SUP2 gene was disrupted, and an abundance of this protein was observed in cells overexpressing the SUP2 gene. The localization of this protein was studied in subcellular fractionation experiments. The SUP2 gene product proved to be uniformly distributed throughout ribosome-enriched samples, i.e. free polysomes, crude microsomes and rough endoplasmic reticulum. It was not found in the cytoplasm and smooth endoplasmic reticulum. The SUP2-encoded protein was fully ribosome associated and less abundant than the ribosomal protein L3. Also, in a sucrose gradient, Sup2 preferentially cosedimented with the 40S ribosomal subunit, but not with the 60S subunit. The functional significance of this association is discussed.

Reference Type
Journal Article
Authors
Didichenko SA, Ter-Avanesyan MD, Smirnov VN
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference