Reference: Thibon C, et al. (2010) Aromatic potential of botrytized white wine grapes: identification and quantification of new cysteine-S-conjugate flavor precursors. Anal Chim Acta 660(1-2):190-6

Reference Help

Abstract


Sweet wines made from botrytized grapes contain much higher concentrations of volatile thiols, especially 3-sulfanylhexan-1-ol (3SH), than dry white wines. Three new specific volatile thiols (3-sulfanylpentan-1-ol (3SP), 3-sulfanylheptan-1-ol (3SHp), and 2-methyl-3-sulfanylbutan-1-ol (2M3SB) were recently identified in Sauternes wines. Like most volatile thiols, these compounds were almost totally absent from must, mainly being formed during alcoholic fermentation. In this work, we describe the identification and quantification of three new cysteine-S-conjugate precursors in must made from Botrytis-infected grapes. S-3-(pentan-1-ol)-L-cysteine (P-3SP), S-3-(heptan-1-ol)-L-cysteine (P-3SHp), and S-3-(2-methylbutan-1-ol)-L-cysteine (P-2M3SB) were identified by direct GC-MS analysis of their derivative forms obtained by silylation of an enriched fraction, isolated from must by affinity chromatography. Concentrations were considerably higher when Botrytis cinerea had developed on the grapes. In botrytized must, the mean levels of P-3SP, P-3SHp, and P-2M3SB were in the vicinity of 700, 50, and 500 nM, respectively, whereas concentrations in healthy must ranged from 0 to 50 nM. This indicated that these three new sulfanyl alcohols, responsible for the characteristic aroma of botrytized wines, were formed by the yeast metabolism during alcoholic fermentation from the corresponding non-volatile cysteine-S-conjugate precursors. Moreover, these results highlighted the predominant role of botrytization in developing grape aroma potential.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Thibon C, Shinkaruk S, Jourdes M, Bennetau B, Dubourdieu D, Tominaga T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference