Reference: Zhao Z, et al. (2009) Functional conservation of tRNase ZL among Saccharomyces cerevisiae, Schizosaccharomyces pombe and humans. Biochem J 422(3):483-92

Reference Help

Abstract


Although tRNase Z from various organisms was shown to process nuclear tRNA 3' ends in vitro, only a very limited number of studies have reported its in vivo biological functions. tRNase Z is present in a short form, tRNase Z(S), and a long form, tRNase Z(L). Unlike Saccharomyces cerevisiae, which contains one tRNase Z(L) gene (scTRZ1) and humans, which contain one tRNase Z(L) encoded by the prostate-cancer susceptibility gene ELAC2 and one tRNase Z(S), Schizosaccharomyces pombe contains two tRNase Z(L) genes, designated sptrz1(+) and sptrz2(+). We report that both sptrz1(+) and sptrz2(+) are essential for growth. Moreover, sptrz1(+) is required for cell viability in the absence of Sla1p, which is thought to be required for endonuclease-mediated maturation of pre-tRNA 3' ends in yeast. Both scTRZ1 and ELAC2 can complement a temperature-sensitive allele of sptrz1(+), sptrz1-1, but not the sptrz1 null mutant, indicating that despite exhibiting species specificity, tRNase Z(L)s are functionally conserved among S. cerevisiae, S. pombe and humans. Overexpression of sptrz1(+), scTRZ1 and ELAC2 can increase suppression of the UGA nonsense mutation ade6-704 through facilitating 3' end processing of the defective suppressor tRNA that mediates suppression. Our findings reveal that 3' end processing is a limiting step for defective tRNA maturation and demonstrate that overexpression of sptrz1(+), scTRZ1 and ELAC2 can promote defective tRNA 3' processing in vivo. Our results also support the notion that yeast tRNase Z(L) is absolutely required for 3' end processing of at least a few pre-tRNAs even in the absence of Sla1p.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Zhao Z, Su W, Yuan S, Huang Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference