Reference: Hwang YC, et al. (2009) Predicting essential genes based on network and sequence analysis. Mol Biosyst 5(12):1672-8

Reference Help

Abstract


Essential genes are indispensable to the viability of an organism. Identification and analysis of essential genes is key to understanding the systems level organization of living cells. On the other hand, the ability to predict these genes in pathogens is of great importance for directed drug development. Global analysis of protein interaction networks provides an effective way to elucidate the relationships between genes. It has been found that essential genes tend to be highly connected and generally have more interactions than nonessential ones. With recent large-scale identifications of essential genes and protein-protein interactions in Saccharomyces cerevisiae and Escherichia coli, we have systematically investigated the topological properties of essential and nonessential genes in the protein-protein interaction networks. Essential genes tend to play topologically more important roles in protein interaction networks. Many topological features were found to be statistically discriminative between essential and nonessential genes. In addition, we have also examined sequence properties such as open reading frame length, strand, and phyletic retention for their association with the gene essentiality. Employing the topological features in the protein interaction network and the sequence properties, we have built a machine learning classifier capable of predicting essential genes. Computational prediction of essential genes circumvents expensive and difficult experimental screens and will help antimicrobial drug development.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hwang YC, Lin CC, Chang JY, Mori H, Juan HF, Huang HC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence