Reference: Chavrier P, et al. (1991) Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature 353(6346):769-72

Reference Help

Abstract


Mammalian cells express many ras-like low molecular mass GTP-binding proteins (rab proteins) that are highly homologous to the Ypt1 and Sec4 proteins involved in controlling secretion in yeast. Owing to their structural similarity and to their variety, rab proteins have been postulated to act as specific regulators of membrane traffic in exocytosis and endocytosis, and rab5 has been shown to be involved in early endosome fusion in vitro. In agreement with their postulated functions, all rab proteins studied so far have been found in distinct subcompartments along the exocytic or endocytic pathways. To define the region mediating their specific localization, we transiently expressed rab2, rab5 and rab7 hybrid proteins in BHK cells, and determined their intracellular localization by immunofluorescence confocal microscopy and subcellular fractionation. Here we present evidence that the highly variable C-terminal domain contains structural elements necessary for the association of rab proteins with their specific target membranes in the endocytic pathway.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence