Reference: Hou L (2010) Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160(4):1084-93

Reference Help

Abstract


Fermentation properties under the control of multiple genes of industrial Saccharomyces cerevisiae strain are difficult to alter with traditional methods. Here, we describe efficient and reliable genome shuffling to increase ethanol production through the rapid improvement of stress resistance. The strategy is carried out using yeast sexual and asexual reproduction by itself instead of polyethylene glycol-mediated protoplast fusion. After three rounds of genome shuffling, the best performing strain S3-10 was obtained on the special plate containing a high ethanol concentration. It exhibits substantial improvement in multiple stress tolerance to ethanol, glucose, and heat. The cycle of fermentation of S3-10 was not only shortened, but also, ethanol yield was increased by up to 10.96% compared with the control in very-high-gravity (VHG) fermentations. In total, S3-10 possesses optimized fermentation characteristics, which will be propitious to the development of bioethanol fermentation industry.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hou L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence