Reference: Hubner NC, et al. (2008) Peptide separation with immobilized pI strips is an attractive alternative to in-gel protein digestion for proteome analysis. Proteomics 8(23-24):4862-72

Reference Help

Abstract


Complex protein mixtures have traditionally been separated by 2-DE. Görg introduced IPGs as the first dimension of protein separation. In recent years, MS-based proteomics has increasingly become the method of choice for identifying and quantifying large number of proteins. In that technology, to decrease analyte complexity, proteins are often separated by 1-D SDS-gel electrophoresis before online MS analysis. Here, we investigate a recently introduced device for peptide separation with IPGs (Agilent OFFGEL). Loading capacity for optimal peptide focusing is below 100 microg and--similar to 2-D gels--IEF is more efficient in the acidic than the basic pH region. The 24-well fractionation format resulted in about 40% additional peptide identifications but less than 20% additional protein identifications than the 12-well format. Compared to in-gel digestion, peptide IEF consistently identified a third more proteins with equal number of fractions. Low protein starting amounts (10 microg) still resulted in deep proteome coverage. Advantages of the in-gel format include better reliability and robustness. Considering its superior performance, diminished sample and work-up requirements, peptide IEF will become a method of choice for sample preparation in proteomics.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hubner NC, Ren S, Mann M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence