Reference: Chechik G, et al. (2008) Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network. Nat Biotechnol 26(11):1251-9

Reference Help

Abstract


Significant insight about biological networks arises from the study of network motifs--overly abundant network subgraphs--but such wiring patterns do not specify when and how potential routes within a cellular network are used. To address this limitation, we introduce activity motifs, which capture patterns in the dynamic use of a network. Using this framework to analyze transcription in Saccharomyces cerevisiae metabolism, we find that cells use different timing activity motifs to optimize transcription timing in response to changing conditions: forward activation to produce metabolic compounds efficiently, backward shutoff to rapidly stop production of a detrimental product and synchronized activation for co-production of metabolites required for the same reaction. Measuring protein abundance over a time course reveals that mRNA timing motifs also occur at the protein level. Timing motifs significantly overlap with binding activity motifs, where genes in a linear chain have ordered binding affinity to a transcription factor, suggesting a mechanism for ordered transcription. Finely timed transcriptional regulation is therefore abundant in yeast metabolism, optimizing the organism's adaptation to new environmental conditions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Chechik G, Oh E, Rando O, Weissman J, Regev A, Koller D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence