Reference: Matic I, et al. (2008) Phosphorylation of SUMO-1 occurs in vivo and is conserved through evolution. J Proteome Res 7(9):4050-7

Reference Help

Abstract


Protein dynamics is regulated by an elaborate interplay between different post-translational modifications. Ubiquitin and ubiquitin-like proteins (Ubls) are small proteins that are covalently conjugated to target proteins with important functional consequences. One such modifier is SUMO, which mainly modifies nuclear proteins. SUMO contains a unique N-terminal arm not present in ubiquitin and other Ubls, which functions in the formation of SUMO polymers. Here, we unambiguously show that serine 2 of the endogenous SUMO-1 N-terminal protrusion is phosphorylated in vivo using very high mass accuracy mass spectrometry at both the MS and the MS/MS level and complementary fragmentation techniques. Strikingly, we detected the same phosphorylation in yeast, Drosophila and human cells, suggesting an evolutionary conserved function for this modification. The nearly identical human SUMO-2 and SUMO-3 isoforms differ in serine 2; thus, only SUMO-3 could be phosphorylated at this position. Our finding that SUMO can be modified may point to an additional level of complexity through modifying a protein-modifier.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Matic I, Macek B, Hilger M, Walther TC, Mann M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence