Reference: Kelbauskas L, et al. (2007) Sequence-dependent nucleosome structure and stability variations detected by Förster resonance energy transfer. Biochemistry 46(8):2239-48

Reference Help

Abstract


Nucleosomes, the basic unit of eukaryotic chromosome structure, cover most of the DNA in eukaryotes, including regulatory sequences. Here, a recently developed Förster resonance energy transfer approach is used to compare structure and stability features of sea urchin 5S nucleosomes and nucleosomes reconstituted on two promoter sequences that are nucleosomal in vivo, containing the yeast GAL10 TATA or the major transcription response elements from the mouse mammary tumor virus promoter. All three sequences form mononucleosomes with similar gel mobilities and similar stabilities at moderate salt concentrations. However, the two promoter nucleosomes differ from 5S nucleosomes in (1) diffusion coefficient values, which suggest differences in nucleosome compaction, (2) intrinsic FRET efficiencies (in solution or in gels), and (3) the response of FRET efficiency to high (>or=600 mM) NaCl concentrations, subnanomolar nucleosome concentrations, and elevated temperatures (to 42 degrees C). These results indicate that nucleosome features can vary depending on the DNA sequence they contain and show that this fluorescence approach is sufficiently sensitive to detect such differences. Sequence-dependent variations in nucleosome structure or stability could facilitate specific nucleosome recognition, working together with other known genomic regulatory mechanisms. The variations in salt-, concentration-, and temperature-dependent responses all occur under conditions that have been shown previously to produce release of H2A-H2B dimers or terminal DNA from nucleosomes and could thus involve differences in those processes, as well as in other features.

Reference Type
Comparative Study | Evaluation Study | Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Kelbauskas L, Chan N, Bash R, Yodh J, Woodbury N, Lohr D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference