Reference: Fanning E, et al. (2006) A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34(15):4126-37

Reference Help

Abstract


Processing of DNA in replication, repair and recombination pathways in cells of all organisms requires the participation of at least one major single-stranded DNA (ssDNA)-binding protein. This protein protects ssDNA from nucleolytic damage, prevents hairpin formation and blocks DNA reannealing until the processing pathway is successfully completed. Many ssDNA-binding proteins interact physically and functionally with a variety of other DNA processing proteins. These interactions are thought to temporally order and guide the parade of proteins that 'trade places' on the ssDNA, a model known as 'hand-off', as the processing pathway progresses. How this hand-off mechanism works remains poorly understood. Recent studies of the conserved eukaryotic ssDNA-binding protein replication protein A (RPA) suggest a novel mechanism by which proteins may trade places on ssDNA by binding to RPA and mediating conformation changes that alter the ssDNA-binding properties of RPA. This article reviews the structure and function of RPA, summarizes recent studies of RPA in DNA replication and other DNA processing pathways, and proposes a general model for the role of RPA in protein-mediated hand-off.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't | Review
Authors
Fanning E, Klimovich V, Nager AR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference