Reference: Romov PA, et al. (2006) Comparative genomics reveals long, evolutionarily conserved, low-complexity islands in yeast proteins. J Mol Evol 63(3):415-25

Reference Help

Abstract


Eukaryotic proteomes abound in low-complexity sequences, including tandem repeats and regions with significantly biased amino acid compositions. We assessed the functional importance of compositionally biased sequences in the yeast proteome using an evolutionary analysis of 2838 orthologous open reading frame (ORF) families from three Saccharomyces species (S. cerevisiae, S. bayanus, and S. paradoxus). Sequence conservation was measured by the amino acid sequence variability and by the ratio of nonsynonymous-to-synonymous nucleotide substitutions (K(a)/K(s)) between pairs of orthologous ORFs. A total of 1033 ORF families contained one or more long (at least 45 residues), low-complexity islands as defined by a measure based on the Shannon information index. Low-complexity islands were generally less conserved than ORFs as a whole; on average they were 50% more variable in amino acid sequences and 50% higher in K(a)/K(s) ratios. Fast-evolving low-complexity sequences outnumbered conserved low-complexity sequences by a ratio of 10 to 1. Sequence differences between orthologous ORFs fit well to a selectively neutral Poisson model of sequence divergence. We therefore used the Poisson model to identify conserved low-complexity sequences. ORFs containing the 33 most conserved low-complexity sequences were overrepresented by those encoding nucleic acid binding proteins, cytoskeleton components, and intracellular transporters. While a few conserved low-complexity islands were known functional domains (e.g., DNA/RNA-binding domains), most were uncharacterized. We discuss how comparative genomics of closely related species can be employed further to distinguish functionally important, shorter, low-complexity sequences from the vast majority of such sequences likely maintained by neutral processes.

Reference Type
Comparative Study | Journal Article | Research Support, N.I.H., Extramural
Authors
Romov PA, Li F, Lipke PN, Epstein SL, Qiu WG
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference