Reference: Guo W, et al. (2006) The bioreduction of a series of benzoquinone ansamycins by NAD(P)H:quinone oxidoreductase 1 to more potent heat shock protein 90 inhibitors, the hydroquinone ansamycins. Mol Pharmacol 70(4):1194-203

Reference Help

Abstract


We have previously evaluated the role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the bioreductive metabolism of 17-(allylamino)-demethoxygeldanamycin (17AAG) to the corresponding hydroquinone, a more potent 90-kDa heat shock protein (Hsp90) inhibitor. Here, we report an extensive study with a series of benzoquinone ansamycins, which includes gel-danamycin, 17-(amino)-17-demethoxygeldanamycin, and 17-demethoxy-17-[[2-(dimethylamino)ethyl]amino]-geldanamycin. The reduction of these benzoquinone ansamycins by recombinant human NQO1 to the corresponding hydroquinone ansamycins was monitored by high-performance liquid chromatography (HPLC) and confirmed by liquid chromatography/mass spectrometry. Inhibition of purified yeast Hsp90 ATPase activity was augmented in the presence of NQO1 and abrogated by 5-methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl-]indole-4,7-dione (ES936), a mechanism-based inhibitor of NQO1, showing that the hydroquinone ansamycins were more potent Hsp90 inhibitors than their parent quinones. An isogenic pair of human breast cancer cell lines, MDA468 and MDA468/NQ16, differing in expression of NQO1, was used, and HPLC analysis showed that hydroquinone ansamycins were formed by the MDA468/NQ16 cells, which could be prevented by ES936 pretreatment. The MDA468/NQ16 cells were more sensitive to growth inhibition after treatment with the benzoquinone ansamycins compared with the MDA468 cells; this increased sensitivity could be reduced by ES936 pretreatment. The increased duration of benzoquinone ansamycin exposure showed increased potency and -fold inhibition in MDA468/NQ16 cells relative to the parental MDA468 cells. Computational-based molecular modeling studies displayed additional contacts between yeast Hsp90 and the hydroquinone ansamycins, which translated to greater interaction energies compared with the corresponding benzoquinone ansamycins. In conclusion, these studies show that the reduction of this series of benzoquinone ansamycins by NQO1 generates the corresponding hydroquinone ansamycins, which exhibit enhanced Hsp90 inhibition.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Guo W, Reigan P, Siegel D, Zirrolli J, Gustafson D, Ross D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference