Reference: Narayanan V, et al. (2006) The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks. Cell 125(7):1283-96

Reference Help

Abstract


DNA palindromes often colocalize in cancer cells with chromosomal regions that are predisposed to gene amplification. The molecular mechanisms by which palindromes can cause gene amplification are largely unknown. Using yeast as a model system, we found that hairpin-capped double-strand breaks (DSBs) occurring at the location of human Alu-quasipalindromes lead to the formation of intrachromosomal amplicons with large inverted repeats (equivalent to homogeneously staining regions in mammalian chromosomes) or extrachromosomal palindromic molecules (equivalent to double minutes [DM] in mammalian cells). We demonstrate that the specific outcomes of gene amplification depend on the applied selection, the nature of the break, and the chromosomal location of the amplified gene relative to the site of the hairpin-capped DSB. The rules for the palindrome-dependent pathway of gene amplification defined in yeast may operate during the formation of amplicons in human tumors.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Narayanan V, Mieczkowski PA, Kim HM, Petes TD, Lobachev KS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence