Reference: Jiang W, et al. (2006) A novel model-free approach for reconstruction of time-delayed gene regulatory networks. Sci China C Life Sci 49(2):190-200

Reference Help

Abstract


Reconstruction of genetic networks is one of the key scientific challenges in functional genomics. This paper describes a novel approach for addressing the regulatory dependencies between genes whose activities can be delayed by multiple units of time. The aim of the proposed approach termed TdGRN (time-delayed gene regulatory networking) is to reversely engineer the dynamic mechanisms of gene regulations, which is realized by identifying the time-delayed gene regulations through supervised decision-tree analysis of the newly designed time-delayed gene expression matrix, derived from the original time-series microarray data. A permutation technique is used to determine the statistical classification threshold of a tree, from which a gene regulatory rule(s) is extracted. The proposed TdGRN is a model-free approach that attempts to learn the underlying regulatory rules without relying on any model assumptions. Compared with model-based approaches, it has several significant advantages: it requires neither any arbitrary threshold for discretization of gene transcriptional values nor the definition of the number of regulators (k). We have applied this novel method to the publicly available data for budding yeast cell cycling. The numerical results demonstrate that most of the identified time-delayed gene regulations have current biological knowledge supports.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Jiang W, Li X, Guo Z, Li C, Wang L, Rao S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence