Reference: Cho DY, et al. (2006) Identification of biochemical networks by S-tree based genetic programming. Bioinformatics 22(13):1631-40

Reference Help

Abstract


Motivation: Most previous approaches to model biochemical networks have focused either on the characterization of a network structure with a number of components or on the estimation of kinetic parameters of a network with a relatively small number of components. For system-level understanding, however, we should examine both the interactions among the components and the dynamic behaviors of the components. A key obstacle to this simultaneous identification of the structure and parameters is the lack of data compared with the relatively large number of parameters to be estimated. Hence, there are many plausible networks for the given data, but most of them are not likely to exist in the real system.

Results: We propose a new representation named S-trees for both the structural and dynamical modeling of a biochemical network within a unified scheme. We further present S-tree based genetic programming to identify the structure of a biochemical network and to estimate the corresponding parameter values at the same time. While other evolutionary algorithms require additional techniques for sparse structure identification, our approach can automatically assemble the sparse primitives of a biochemical network in an efficient way. We evaluate our algorithm on the dynamic profiles of an artificial genetic network. In 20 trials for four settings, we obtain the true structure and their relative squared errors are <5% regardless of releasing constraints about structural sparseness. In addition, we confirm that the proposed algorithm is robust within +/-10% noise ratio. Furthermore, the proposed approach ensures a reasonable estimate of a real yeast fermentation pathway. The comparatively less important connections with non-zero parameters can be detected even though their orders are below 10(-2). To demonstrate the usefulness of the proposed algorithm for real experimental biological data, we provide an additional example on the transcriptional network of SOS response to DNA damage in Escherichia coli. We confirm that the proposed algorithm can successfully identify the true structure except only one relation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Cho DY, Cho KH, Zhang BT
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference