Reference: Smulevich G, et al. (1991) Conformational change and histidine control of heme chemistry in cytochrome c peroxidase: resonance Raman evidence from Leu-52 and Gly-181 mutants of cytochrome c peroxidase. Biochemistry 30(39):9546-58

Reference Help

Abstract


Resonance Raman (RR) spectra are reported for Fe(III), Fe(II), and Fe(II)CO forms of site-directed mutants of the cytochrome c peroxidase variant CCP(MI), cloned in Escherichia coli. The Fe(II) form is five-coordinate (5-c) and high-spin at low pH, but it is six-coordinate (6-c) and low-spin at high pH except when the distal His-52 residue is replaced with Leu, showing the sixth ligand to be the His-52 imidazole. Although the Leu-52 mutant stays 5-c, it does undergo an alkaline transition, as revealed by upshifts and broadening of bands assigned to vinyl C = C stretching (1620 cm-1) and C beta-vinyl bending (402 cm-1). Similar changes are seen for CCP(MI) and other mutants. Thus the alkaline transition induces a conformational change that affects the vinyl groups, probably through changes in their orientation, and that permits the His-52 imidazole to bind the Fe. The RR band arising from the stretching of the proximal Fe(II)-imidazole bond contains components at ca. 235 and 245 cm-1 for CCP(MI), which are believed to reflect a double well potential for the H-bond between the proximal His-175 imidazole and the Asp-235 carboxylate group. Loss of this H-bond by mutation of Asp-235 to Asn results in the loss of these two bands and their replacement by a single band at 205 cm-1. Although the Fe(II)-imidazole stretching mode cannot be observed in the 6-c alkaline form of the enzyme, the sixth ligand in the alkaline form of CCP(MI) is photolabile, and the status of the Fe(II)-imidazole bond can be determined in the resulting 5-c-photoproduct. For CCP(MI) at alkaline pH, the conformation change induces an increase in the 235/245-cm-1 ratio, reflecting a perturbation of the H-bond potential. In the His-52----Leu mutant, a 205-cm-1 band appears along with the 235/245-cm-1 doublet at alkaline pH, indicating partial loss of the proximal H-bond due to the distal alteration. The effect of mutations that perturb the H-bonding network that extends from the distal to the proximal side of the heme is more dramatic: at alkaline pH, His-181----Gly, Arg-48----Leu, and Trp-51----Phe mutants show an Fe(II)-imidazole stretching mode at 205 cm-1 exclusively, indicating complete loss of the proximal Asp-235-His-175 H-bond.(ABSTRACT TRUNCATED AT 400 WORDS)

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Smulevich G, Miller MA, Kraut J, Spiro TG
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference