Reference: Geesaman BJ (2006) Genetics of aging: implications for drug discovery and development. Am J Clin Nutr 83(2):466S-469S

Reference Help

Abstract


Aging is not a passive activity, but an actively regulated metabolic process. Specific genes have been identified that regulate aging, although aging, and consequently longevity, is only partially under genetic influence. It is also possible to increase life span by environmental modification; for example, caloric restriction can increase life span. Because human life span is long, directly studying aging in humans is impractical. Fortunately, significant insights into aging can be achieved by studying short-lived organisms, such as yeast, worms, and fruit flies. Many of the molecular pathways regulating aging in these lower organisms are conserved in mammals and overlap with pathways regulating metabolism. For example, an insulin-growth hormone signaling system has been implicated in regulating aging and longevity in both worms and mammals. Furthermore, the dysregulation of glucose homeostasis is a hallmark of aging in humans. In fact, type 2 diabetes, a disease of glucose homeostasis, can be conceptualized as a form of accelerated aging. Consistent with this, aging and diabetes are both common risk factors for a wide range of diseases. Because aging and diabetes are intimately related at a molecular level, diabetes may be able to provide the link between disease treatment (eg, diabetes) and the prevention of age-related diseases. If specific molecular pathways controlling the rate of aging can be modulated genetically, then perhaps they can be modulated pharmacologically. These insights may ultimately have an important impact on the discovery and development of drugs to both treat and prevent a wide range of diseases.

Reference Type
Journal Article | Review
Authors
Geesaman BJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference