Reference: Mendoza M, et al. (2005) The fission yeast MO25 protein functions in polar growth and cell separation. Eur J Cell Biol 84(12):915-26

Reference Help

Abstract


Proteins of the MO25 family are widely conserved but their function has not been characterized in detail. Human MO25 is a cofactor of LKB1, a conserved protein kinase with roles in cell polarity in nematodes, flies and mammalian cells. Furthermore, the budding yeast MO25 homologue, Hym1, is important for cell separation and morphogenesis. We have characterized Pmo25p, the MO25 homologue in the fission yeast Schizosaccharomyces pombe. Pmo25p is an essential protein required for polar growth; in its absence the actin cytoskeleton becomes depolarized and cells adopt a round morphology. In addition, pmo25 mutants are defective in cell separation. Both functions of Pmo25p appear to be mediated by the Orb6p-Mob2p kinase complex. Pmo25p shows no distinct localization during interphase, but it is recruited to one of the two spindle pole bodies during anaphase and to the division site during cytokinesis. The septation initiation network (SIN) regulates the localization of Pmo25p, suggesting that it regulates Pmo25p function during cell division.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Mendoza M, Redemann S, Brunner D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence