Reference: Novak BA and Jain AN (2006) Pathway recognition and augmentation by computational analysis of microarray expression data. Bioinformatics 22(2):233-41

Reference Help

Abstract


Motivation: We present a system, QPACA (Quantitative Pathway Analysis in Cancer) for analysis of biological data in the context of pathways. QPACA supports data visualization and both fine- and coarse-grained specifications, but, more importantly, addresses the problems of pathway recognition and pathway augmentation.

Results: Given a set of genes hypothesized to be part of a pathway or a coordinated process, QPACA is able to reliably distinguish true pathways from non-pathways using microarray expression data. Relying on the observation that only some of the experiments within a dataset are relevant to a specific biochemical pathway, QPACA automates selection of this subset using an optimization procedure. We present data on all human and yeast pathways found in the KEGG pathway database. In 117 out of 191 cases (61%), QPACA was able to correctly identify these positive cases as bona fide pathways with p-values measured using rigorous permutation analysis. Success in recognizing pathways was dependent on pathway size, with the largest quartile of pathways yielding 83% success. In cross-validation tests of pathway membership prediction, QPACA was able to yield enrichments for predicted pathway genes over random genes at rates of 2-fold or better the majority of the time, with rates of 10-fold or better 10-20% of the time.

Availability: The software is available for academic research use free of charge by email request.

Supplementary information: Data used in the paper may be downloaded from http://www.jainlab.org/downloads.html

Reference Type
Evaluation Study | Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Novak BA, Jain AN
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference