Reference: Mera N, et al. (2004) Analysis of gene expression in yeast protoplasts using DNA microarrays and their application for efficient production of invertase and alpha-glucosidase. J Biosci Bioeng 97(3):169-83

Reference Help

Abstract


The global gene expression of cultured Saccharomyces cerevisiae protoplasts was compared with that of cells using DNA microarray. Quantitative and qualitative analyses revealed that after 6 h of cultivation, 416 gene transcript levels (about 7.1% in all) in the cultured protoplasts were different from those in the cells. Various characteristics and functions of the protoplasts were predicted from the analysis of the gene functions. The cultured protoplasts were more sensitive to oxidative stress than the cultured cells. Their cell cycles were arrested at the G1 phase and cell wall synthesis was promoted. Carbohydrate metabolism was activated in cultured protoplasts, while amino acid biosynthesis was inhibited. Furthermore, some genes associated with the secretory pathway of metabolites were activated, leading to active secretion of these metabolites into the broth. As an example of the application of DNA microarray analysis, we developed two novel methods for the production of useful enzymes based on the characteristics of protoplasts. One was the production of invertase based on the activated secretory pathway, while the other was the production of alpha-glucosidase based on the activated carbohydrate metabolism. The secretion of invertase and alpha-glucosidase was promoted in cultured protoplasts. The invertase and alpha-glucosidase productivities in the cultured protoplasts were 657 U and 218 U, respectively. On the other hand, only 227 U of invertase was produced, while alpha-glucosidase was not detected, in the cultured cells. The fragile protoplasts were immobilized in agarose gel to protect them from hydrodynamic stress. Four repeated-batch cultures with the immobilized protoplasts were performed, leading to the production of 1574 U of invertase and 739 U of alpha-glucosidase. The same productivities were obtained when this system was scaled up by 10-fold (invertase: 13304 U; alpha-glucosidase: 7688 U).

Reference Type
Journal Article
Authors
Mera N, Aoyagi H, Nakasono S, Iwasaki K, Saiki H, Tanaka H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference