Reference: Furukawa K, et al. (2003) Increased alcohol acetyltransferase activity by inositol limitation in Saccharomyces cerevisiae in sake mash. J Biosci Bioeng 96(4):380-6

Reference Help

Abstract


Sake mash was prepared using rice with polishing ratios of 70%, 80%, 90% and 98%. At a polishing ratio of 70%, the highest isoamyl acetate/isoamyl alcohol (E/A) ratio in sake was obtained, and inositol addition caused a decrease in E/A ratio. In several strains tested, inositol addition to the mash decreased isoamyl acetate content and E/A ratio in sake Inositol addition significantly decreased alcohol acetyltransferase (AATase) activity which is responsible for the synthesis of acetate esters from alcohols and acetyl coenzyme A. The results of Northern blot analysis and disruption of the OPII gene, an inositol/choline-mediated negative regulatory gene, showed that the decrease in AATase activity following inositol addition is not due to a transcriptional event. Inositol addition increased phosphatidylinositol (PI) content 3-fold in sake mash yeast cells, while it had no effect on phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidyl-serine (PS) contents. When cell-free extracts prepared from sake mash yeast cells were treated with chloroform or phospholipase C to remove PI, no difference in AATase activity in sake mash between with (Ino+) and without (Ino-) inositol addition was observed. PI prepared from sake mash yeast cells inhibited AATase activity more strongly than PC and PE. Furthermore, when PI, PC, PE and PS at a ratio (1.0:1.28:0.70:0.09) corresponding to the phospholipid composition of Ino+ sake mash yeast cells were added to a reaction mixture, the AATase activity decreased to 26-55% that of yeast cells from the Ino- mash with a phospholipid composition of 0.34:1.28:0.7:0.09. Approximately all of the PI was recovered in the ammonium sulfate precipitate of the cell-free extract, while only half of the PC and PE was recovered. The acidic phospholipid, phosphatidylglycerol, as well as PI inhibited AATase activity more strongly than PC, despite its having the same fatty acid composition as PC. These results suggest that the strong inhibition of AATase activity by PI is due to its high adsorptive capacity for the AATase protein. Therefore, rice polishing can remove inositol from rice leading to an increase in AATase activity, and resulting in a high E/A ratio in sake.

Reference Type
Journal Article
Authors
Furukawa K, Yamada T, Mizoguchi H, Hara S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference