Reference: Morita Y, et al. (2002) Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. J Biosci Bioeng 94(5):390-4

Reference Help

Abstract


In Saccharomyces cerevisiae, the PUT1-encoded proline oxidase and the PUT2-encoded delta1-pyrroline-5-carboxylate dehydrogenase are required to convert proline to glutamate. We recently showed that a put1 disruptant accumulated higher levels of proline intracellularly and conferred higher resistance to freezing stress. Here, we determined the effect of put2 disruption on yeast cell viability under freezing stress. When grown on arginine as the sole nitrogen source, the put2 disruptant showed a significant decrease in cell viability after freezing despite the high proline and arginine contents. This result suggests that delta1-pyrroline-5-carboxylate or glutamate-gamma-semialdehyde, a proline catabolism intermediate, is toxic to yeast cells under freezing stress. In contrast, the survival rate of the wild-type and the put1-disruptant strains was found to increase after freezing in proportion to their arginine contents. This indicates that arginine has a cryoprotective function in yeast. Furthermore, the yeast cells accumulated proline as well as arginine in the vacuole, suggesting that there is a system for the transport of excess proline to the vacuole and that this vacuolar accumulation may be important in the freezing resistance of yeast cells.

Reference Type
Journal Article
Authors
Morita Y, Nakamori S, Takagi H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence