Reference: Mello CM and Marx KA (1992) The affinity of DNA-microtubule protein complexes and their disruption by tubulin binding drugs. J Biomol Struct Dyn 9(4):791-805

Reference Help

Abstract


Using the gel shift assay system, we have measured the apparent affinity constant for the interaction of two different DNAs with MAP proteins found in both total calf brain microtubules and heat stable brain preparations. Both DNAs studied contained centromere/kinetochore sequences- one was enriched in the calf satellite DNA; the other was a large restriction fragment containing the yeast CEN11 DNA sequence. Complexes formed using both DNAs had similar Kapp values in the range of 2.1 x 10(7) M-1 to 2.0 x 10(8) M-1. CEN11 DNA-MTP complexes had by far the highest Kapp value of 2.0 x 10(8) M-1. The CEN11 DNA sequence is where the yeast kinetochore of chromosome 11 is formed and where the single yeast microtubule is bound in vivo. The CEN11 conserved region II known binding sites-(dA/dT)n runs- for mammalian MAP2 protein, are in good agreement with this higher Kapp value. The effects of the classical tubulin binding drugs colchicine, podophyllotoxin and vinblastine on the DNA-MAP protein complex stability were investigated by determining the drug concentrations where the complexes were destabilized. Only the complexes formed from total microtubule protein (tubulin containing) were destabilized over a wide drug concentration range. Heat stable brain protein complexes (no tubulin) were largely unaffected. Furthermore, it took 10-100 fold higher drug concentrations to disrupt the CEN11 DNA complexes compared to the calf thymus satellite DNA enriched complexes. These data support our previous results suggesting that there is a DNA sequence dependent interaction with MAP proteins that appears to be conserved in evolution (Marx et. al., Biochim. Biophys. Acta. 783, 383-392, 1984; Marx and Denial, Molecular Basis of Cancer 172B, 65-75 1985). In addition, these results imply that the classical tubulin binding drugs may exert their biological effects in cells at least in part by disrupting DNA-Protein complexes of the type we have studied here.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Mello CM, Marx KA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference