Reference: Sanderson A, et al. (2005) Engineering the structural stability and functional properties of the GI domain into the intrinsically unfolded GII domain of the yeast linker histone Hho1p. J Mol Biol 349(3):608-20

Reference Help

Abstract


Yeast Hho1p contains two domains, GI and GII, that are homologous to the single globular domain of the linker histone H1 (GH1). We showed previously that the isolated GI and GII domains have different structural stabilities and functional properties. GI, like GH1 and the related GH5, is stably folded at low ionic strength (10 mM sodium phosphate) and gives strong protection of chromatosome-length DNA ( approximately 166 bp) during micrococcal nuclease digestion of chromatin. GII is intrinsically unfolded in 10 mM sodium phosphate and gives weak chromatosome protection, but in 250 mM sodium phosphate has a structure very similar to that of GI as determined by NMR spectroscopy. We now show that the loop between helices II and III in GII is the cause of both its instability and its inability to confer strong chromatosome protection. A mutant GII, containing the loop of GI, termed GII-L, is stable in 10 mM sodium phosphate and is as effective as GI in chromatosome protection. Two GII mutants with selected mutations within the original loop were also slightly more stable than GII. In GII, two of the four basic residues conserved at the second DNA binding site ("site II") on the globular domain of canonical linker histones, and in GI, are absent. Introduction of the two "missing" site II basic residues into GII or GII-L destabilised the protein and led to decreased chromatosome protection relative to the protein without the basic residues. In general, the ability to confer chromatosome protection in vitro is closely related to structural stability (the relative population of structured and unstructured states). We have determined the structure of GII-L by NMR spectroscopy. GII-L is very similar to GII folded in 250 mM sodium phosphate, with the exception of the substituted loop region, which, as in GI, contains a single helical turn.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Sanderson A, Stott K, Stevens TJ, Thomas JO
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference