Reference: Raghava GP and Han JH (2005) Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein. BMC Bioinformatics 6:59

Reference Help

Abstract


Background: A large number of papers have been published on analysis of microarray data with particular emphasis on normalization of data, detection of differentially expressed genes, clustering of genes and regulatory network. On other hand there are only few studies on relation between expression level and composition of nucleotide/protein sequence, using expression data. There is a need to understand why particular genes/proteins express more in particular conditions. In this study, we analyze 3468 genes of Saccharomyces cerevisiae obtained from Holstege et al., (1998) to understand the relationship between expression level and amino acid composition.

Results: We compute the correlation between expression of a gene and amino acid composition of its protein. It was observed that some residues (like Ala, Gly, Arg and Val) have significant positive correlation (r > 0.20) and some other residues (Like Asp, Leu, Asn and Ser) have negative correlation (r < -0.15) with the expression of genes. A significant negative correlation (r = -0.18) was also found between length and gene expression. These observations indicate the relationship between percent composition and gene expression level. Thus, attempts have been made to develop a Support Vector Machine (SVM) based method for predicting the expression level of genes from its protein sequence. In this method the SVM is trained with proteins whose gene expression data is known in a given condition. Then trained SVM is used to predict the gene expression of other proteins of the same organism in the same condition. A correlation coefficient r = 0.70 was obtained between predicted and experimentally determined expression of genes, which improves from r = 0.70 to 0.72 when dipeptide composition was used instead of residue composition. The method was evaluated using 5-fold cross validation test. We also demonstrate that amino acid composition information along with gene expression data can be used for improving the function classification of proteins.

Conclusion: There is a correlation between gene expression and amino acid composition that can be used to predict the expression level of genes up to a certain extent. A web server based on the above strategy has been developed for calculating the correlation between amino acid composition and gene expression and prediction of expression level http://kiwi.postech.ac.kr/raghava/lgepred/. This server will allow users to study the evolution from expression data.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Raghava GP, Han JH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference