Reference: Sakuno T, et al. (2004) Decapping reaction of mRNA requires Dcp1 in fission yeast: its characterization in different species from yeast to human. J Biochem 136(6):805-12

Reference Help

Abstract


Cleavage of the 5'-cap structure is involved in the major 5'-to-3' and nonsense-mediated mRNA decay pathways, and the protein complex consisting of Dcp1 and Dcp2 has been identified as the species responsible for the decapping reaction in Saccharomyces cerevisiae and human. Although in vitro studies indicate that Dcp2 is catalytically an active component, the role of Dcp1 in the decapping reaction remains to be explored in organisms other than budding yeast. To elucidate the Dcp1-dependent decapping mechanisms, we identified the homologues of S. cerevisiae Dcp1 (ScDcp1) in higher eukaryotes and analyzed their functions in the different species. The phenotypes of slow growth and mRNA stabilization induced by Scdcp1-gene disruption in budding yeast could be suppressed by the Shizosaccharomyces pombe SpDcp1 but not by the human homologue hDcp1. In contrast, the same phenotypes caused by Spdcp1-gene disruption in fission yeast were effectively complemented by hDcp1 and its partial sequence comparable to SpDcp1. These results indicate that not only Dcp2 but also Dcp1 plays an indispensable role in mRNA-decay pathway and that the characteristics of Dcp1-dependent decapping reaction in fission yeast hold an intermediate position in the evolution of mRNA-decay machinery from budding yeast to mammals.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Sakuno T, Araki Y, Ohya Y, Kofuji S, Takahashi S, Hoshino S, Katada T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence