Reference: Fehr M, et al. (2005) Development and use of fluorescent nanosensors for metabolite imaging in living cells. Biochem Soc Trans 33(Pt 1):287-90

Reference Help

Abstract


To understand metabolic networks, fluxes and regulation, it is crucial to be able to determine the cellular and subcellular levels of metabolites. Methods such as PET and NMR imaging have provided us with the possibility of studying metabolic processes in living organisms. However, at present these technologies do not permit measuring at the subcellular level. The cameleon, a fluorescence resonance energy transfer (FRET)-based nanosensor uses the ability of the calcium-bound form of calmodulin to interact with calmodulin binding polypeptides to turn the corresponding dramatic conformational change into a change in resonance energy transfer between two fluorescent proteins attached to the fusion protein. The cameleon and its derivatives were successfully used to follow calcium changes in real time not only in isolated cells, but also in living organisms. To provide a set of tools for real-time measurements of metabolite levels with subcellular resolution, protein-based nanosensors for various metabolites were developed. The metabolite nanosensors consist of two variants of the green fluorescent protein fused to bacterial periplasmic binding proteins. Different from the cameleon, a conformational change in the binding protein is directly detected as a change in FRET efficiency. The prototypes are able to detect various carbohydrates such as ribose, glucose and maltose as purified proteins in vitro. The nanosensors can be expressed in yeast and in mammalian cell cultures and were used to determine carbohydrate homeostasis in living cells with subcellular resolution. One future goal is to expand the set of sensors to cover a wider spectrum of metabolites by using the natural spectrum of bacterial periplasmic binding proteins and by computational design of the binding pockets of the prototype sensors.

Reference Type
Journal Article
Authors
Fehr M, Okumoto S, Deuschle K, Lager I, Looger LL, Persson J, Kozhukh L, Lalonde S, Frommer WB
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference