Aims: Bioprocess oxidative stress caused by many reactive oxygen species (ROS) can lead to largely irreversible perturbation of yeast bioprocesses. These include the production of proteins derived from recombinant DNA yeast technology (aerobically grown Saccharomyces cerevisiae). These proteins include rennin, amyloglucosidases (glucamylases), interferons, interleukins, insulin, monoclonal antibodies, tissue plasminogen activators (t-PA), sexually transmitted disease antigens, and measles, mumps and rubella antigens, growth hormones, somatotropin, blood clotting factors VIII and XIII. In addition, there may be a demand for severe acute respiratory syndrome-coronavirus antigens, hepatitis A, B and C viral-selected antigens, HIV retroviral antigens, influenza antigens, trypanosomal antigens, and foot and mouth disease antigens. Prevention of oxidative stress has been achieved by application of antioxidant redox metalloenzymes such as superoxide dismutases (containing Cu/Zn cytosolic, Mn mitochondrial and Fe bacterial) glutathione peroxidases (and other Se-containing proteins and enzymes such as the thioredoxins), catalases (Fe-containing), cytochrome c peroxidases (Fe-containing), ceruloplasmins (Cu-containing), metallothionines (these cysteine thiol-rich proteins bind ions of cadmium and mercury) and tyrosinases(Cu-containing).
Methods and results: ROS are generated inadvertently by single metal valency couples such as FeII/FeIII and by FeIII/FeV present in 2700 (including 57 human) isoforms in cytochromes P450 mixed-function oxidases (EC 1.14.14.1; O2 : mono-oxygenase NADPH/NADH requiring). In addition, mixed-metal couples such as valency unmatched forms in CuI/FeII and FeIII/MnIV can recycle electrons. Moreover, proteins/protein chaperone couples can recycle electrons, often where futile-recycling systems have been instigated. Furthermore, oxidized membrane phospholipids (R) can form ROOH (lipid hydroperoxides) and ROH (lipid alkoxides) that can generate ROS through Fenton chemistry (iron-catalysed) chain reactions. Utilization of chain-breaking antioxidants such as vitamin E (alpha-tocopherol) in the lipid phase and vitamin C (ascorbate) in the aqueous phase can terminate these ROS-producing reactions.
Conclusions: The main significance of the study is that proteomic strategies of relief from bioprocess perturbation by ROS of yeast fermentations (used to manufacture proteins required in the food and therapeutic bioindustries) may become possible through addition of selected proteins (including metalloenzymes). The main impact of the study is that the utilization of genetically modified (GM) yeast produced by recombinant DNA technology genomic strategies could circumvent the bioprocessing problems that otherwise result from the bioprocess perturbations: this is as a result of oxidative stress caused by ROS, which is avoidable by deployment of appropriate antioxidants such as vitamins E, C and D (and antioxidant proteins and enzymes often of microbial origin via recombinant DNA technology).
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | File | Description |
---|