Reference: Fujimura T, et al. (2005) Native replication intermediates of the yeast 20 S RNA virus have a single-stranded RNA backbone. J Biol Chem 280(8):7398-406

Reference Help

Abstract


20 S RNA virus is a positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome (2.5 kb) only encodes its RNA polymerase (p91) and forms a ribonucleoprotein complex with p91 in vivo. A lysate prepared from 20 S RNA-induced cells showed an RNA polymerase activity that synthesized the positive strands of viral genome. When in vitro products, after phenol extraction, were analyzed in a time course, radioactive nucleotides were first incorporated into double-stranded RNA (dsRNA) intermediates and then chased out to the final single-stranded RNA products. The positive and negative strands in these dsRNA intermediates were non-covalently associated, and the release of the positive strand products from the intermediates required a net RNA synthesis. We found, however, that these dsRNA intermediates were an artifact caused by phenol extraction. Native replication intermediates had a single-stranded RNA backbone as judged by RNase sensitivity experiments, and they migrated distinctly from a dsRNA form in non-denaturing gels. Upon completion of RNA synthesis, positive strand RNA products as well as negative strand templates were released from replication intermediates. These results indicate that the native replication intermediates consist of a positive strand of less than unit length and a negative strand template loosely associated, probably through the RNA polymerase p91. Therefore, W, a dsRNA form of 20 S RNA that accumulates in yeast cells grown at 37 degrees C, is not an intermediate in the 20 S RNA replication cycle, but a by-product.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Fujimura T, Solórzano A, Esteban R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference