Reference: Beyer A and Wilhelm T (2005) Dynamic simulation of protein complex formation on a genomic scale. Bioinformatics 21(8):1610-6

Reference Help

Abstract


MOTIVATION: One of the central questions in the post-genomic era is the understanding of protein-protein interactions and of protein complex formation. It has been observed that protein complex size distributions of the yeast Saccharomyces cerevisiae decay exponentially. The shape of these size distributions reflects mechanisms of protein complex association and dissociation. RESULTS: We present the most simple dynamic model that is able to reproduce the observed protein complex size distribution for yeast. This protein association-dissociation model (PAD-model) simulates the dynamics of protein complex formation on a genomic scale for about 50 million protein molecules. By ruling out different model variants it is possible to elucidate fundamental features of the protein complex dynamics, e.g. complex association is independent of complex size. In addition, the PAD-model provides information about the complexity of the yeast proteome and it gives an idea of how many complexes could not be identified during the measurements. AVAILABILITY: All programs used for this publication are available on request from the authors. CONTACT: beyer@imb-jena.de SUPPLEMENTARY INFORMATION: Supplementary information about the model and its interpretation can be downloaded from http://www.imb-jena.de/tsb/pad.

Reference Type
Evaluation Studies | Journal Article | Research Support, Non-U.S. Gov't
Authors
Beyer A, Wilhelm T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Evidence Method Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence