Reference: Pinto WJ, et al. (1992) Characterization of enzymatic synthesis of sphingolipid long-chain bases in Saccharomyces cerevisiae: mutant strains exhibiting long-chain-base auxotrophy are deficient in serine palmitoyltransferase activity. J Bacteriol 174(8):2575-81

Reference Help

Abstract


We have begun a biochemical-genetic analysis of the synthesis of sphingolipid long-chain bases in Saccharomyces cerevisiae and found evidence for the occurrence of serine palmitoyltransferase (SPT) and 3-ketosphinganine reductase, enzymes that catalyze the initial steps of the pathway in other organisms. SPT activity was demonstrated in vitro with crude membrane preparations from S. cerevisiae as judged by the formation of radiolabeled 3-ketosphinganine from the condensation of palmitoyl-coenzyme A (CoA) with radiolabeled serine. Shorter (C12 and C14) and longer (C18) acyl-CoAs sustain significant SPT activity, a result consistent with the finding of both C18 and C20 long-chain bases in the organism. Three products of the long-chain-base synthetic pathway, 3-ketosphinganine, erythrosphinganine, and phytosphingosine, neither directly inhibited the reaction in vitro nor affected the specific activity of the enzyme when these bases were included in the culture medium of wild-type cells. Thus, no evidence for either feedback inhibition or repression of enzyme synthesis could be found with these putative effectors. Mutant strains of S. cerevisiae that require a sphingolipid long-chain base for growth fall into two genetic complementation groups, LCB1 and LCB2. Membrane preparations from both lcb1 and lcb2 mutant strains exhibited negligible SPT activity when tested in vitro. Step 2 of the long-chain-base synthetic pathway was demonstrated by the stereospecific NADPH-dependent reduction of 3-ketosphinganine to erythrosphinganine. Membranes isolated from wild-type cells and from an lcb1 mutant exhibited substantial 3-ketosphinganine reductase activity. We conclude that the Lcb- phenotype of these mutants results from a missing or defective SPT, an activity controlled by both the LCB1 and LCB2 genes. These results and earlier work from this laboratory establish that SPT plays an essential role in sphingolipid synthesis in S. cerevisiae.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Pinto WJ, Wells GW, Lester RL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference