Reference: Wang LL, et al. (2004) Control of Hap1-DNA site recognition through the interplay of multiple distinct intermolecular interactions. Biochemistry 43(43):13816-26

Reference Help

Abstract


Hap1 belongs to the Zn(2)Cys(6) zinc binuclear cluster family of transcription factors that typically bind as dimers to symmetric DNA sites containing two CGG triplets separated by spacer DNA. The cluster domain binds CGG while an adjoining C-terminal linker and dimerization helix specifies the length of spacer DNA recognized. Hap1 is unusual in binding a direct repeat of CGG triplets, in contacting a TA in the spacer DNA, and in making direct dimer contacts between its cluster domains. Binding of Hap1 fragments to different DNA sites was tested to determine how these interactions control Hap1-DNA recognition. The spacer TA contacts were found to facilitate monomer binding of Hap1 to a single CGG. When the spacer-binding residues were deleted, binding was still specific for the direct repeat but was much weaker and appeared to require dimerization. When the dimerization helix and all subsequent C-terminal residues were deleted, the remaining linker, cluster domain, and spacer-binding residues still dimerized on DNA. The energy of this dimerization was comparable to that of the Hap1-spacer TA interaction. Moving the TA from the spacer to a position following the second CGG maintained Hap1 monomer binding but greatly weakened dimerization. This suggested that binding a TA after the second CGG triplet required a geometry that impaired dimerization with a Hap1 molecule on the first CGG. The geometric restraints for optimal TA binding and dimerization thus drive Hap1 selectivity for CGG direct repeat sites that contain an asymmetrically positioned spacer TA following the first CGG triplet.

Reference Type
Journal Article
Authors
Wang LL, Denman I, Junker M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference