Reference: Wang P, et al. (2004) A Sch9 protein kinase homologue controlling virulence independently of the cAMP pathway in Cryptococcus neoformans. Curr Genet 46(5):247-55

Reference Help

Abstract


The polysaccharide capsule is one of the established virulence factors in Cryptococcus neoformans that provides a barrier against the host-mediated immune response. Mutation of the gene encoding the Saccharomyces cerevisiae Sch9 protein kinase homologue resulted in cells with enlarged capsules in C. neoformans. Capsule production was abrogated in sch9 pka1 double mutants, indicating that protein kinase A (PKA) signaling is still necessary for capsule formation in sch9 mutants. The sch9 mutant also exhibited increased thermal tolerance, a phenotype similar to sch9 mutant strains of S. cerevisiae. In addition, the sch9 mutant was attenuated in mating and the highly encapsulated cells were attenuated in virulence, in contrast to the pkr1 mutant, lacking the regulatory subunit of protein kinase A, that produced similarly enlarged capsules yet was increased in virulence. Interestingly, the virulence for the sch9 mutant strain could be restored by introduction of a pkr1 mutation; and the sch9 pkr1 mutant strain was dramatically increased in size and capsule thickness, suggesting that Sch9 and PKA function via different targets involved in virulence. Our findings support a model in which Sch9 modulates capsule formation and contributes to the virulence of C. neoformans both independently of and in conjunction with the cAMP-PKA pathway.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Wang P, Cox GM, Heitman J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence