Reference: Yildirim Y and Doruker P (2004) Collective motions of RNA polymerases. Analysis of core enzyme, elongation complex and holoenzyme. J Biomol Struct Dyn 22(3):267-80

Reference Help

Abstract


The anisotropic network model (ANM), a coarse-grained normal mode analysis, is used to study the vibrational dynamics of RNA polymerases (RNAP) around the native states. The theoretical temperature factors obtained from ANM are in conformity with the experimental values for yeast and bacterial RNAP structures in free and complex forms. In the low-frequency collective modes that are related to biological function, both bacterial and yeast RNAPs with a crab claw shape display an opening/closing of the cleft due to the rigid-body motion of the clamp (bottom pincer), which has been also predicted by experiments, together with the motion of the top pincer. Even though slightly lower fluctuations are observed in the elongation complex of yeast RNAP, similar clamp motion still exists in collective modes, which should be concerted with the flexible switches and the bridge helix in driving the transcription process, pointing at the possibility of a ratchet-like mechanism. Two different bacterial holoenzyme (HE) structures are studied, which may have functional significance at different stages of transcription initiation. In a specific closed conformation of the HE, the clamp and top pincer are highly immobilized due to interactions with the sigma subunit. In contrast, the deformation of the top pincer is not inhibited in a relatively open conformation of another HE, which may help load the DNA into the cleft during transcription initiation, even though the clamp motion is still inhibited.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Yildirim Y, Doruker P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference