Reference: Baudot A, et al. (2004) A scale of functional divergence for yeast duplicated genes revealed from analysis of the protein-protein interaction network. Genome Biol 5(10):R76

Reference Help

Abstract


Background: Studying the evolution of the function of duplicated genes usually implies an estimation of the extent of functional conservation/divergence between duplicates from comparison of actual sequences. This only reveals the possible molecular function of genes without taking into account their cellular function(s). We took into consideration this latter dimension of gene function to approach the functional evolution of duplicated genes by analyzing the protein-protein interaction network in which their products are involved. For this, we derived a functional classification of the proteins using PRODISTIN, a bioinformatics method allowing comparison of protein function. Our work focused on the duplicated yeast genes, remnants of an ancient whole-genome duplication.

Results: Starting from 4,143 interactions, we analyzed 41 duplicated protein pairs with the PRODISTIN method. We showed that duplicated pairs behaved differently in the classification with respect to their interactors. The different observed behaviors allowed us to propose a functional scale of conservation/divergence for the duplicated genes, based on interaction data. By comparing our results to the functional information carried by GO annotations and sequence comparisons, we showed that the interaction network analysis reveals functional subtleties, which are not discernible by other means. Finally, we interpreted our results in terms of evolutionary scenarios.

Conclusions: Our analysis might provide a new way to analyse the functional evolution of duplicated genes and constitutes the first attempt of protein function evolutionary comparisons based on protein-protein interactions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Baudot A, Jacq B, Brun C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference