Reference: Fujimura T and Esteban R (2004) The bipartite 3'-cis-acting signal for replication is required for formation of a ribonucleoprotein complex in vivo between the viral genome and its RNA polymerase in yeast 23 S RNA virus. J Biol Chem 279(42):44219-28

Reference Help

Abstract


23 S RNA narnavirus is a persistent positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome (2.9 kb) encodes only its RNA-dependent RNA polymerase, p104, and forms a ribonucleoprotein complex with p104 in vivo. Previously we succeeded in generating 23 S RNA virus in yeast from an expression vector containing the entire viral cDNA sequence. Using this system, we have recently identified a bipartite 3' cis-acting signal for replication. The signal consists of a stretch of four cytidines (Cs) at the 3' end and a mismatched pair of purines in a stem-loop structure that partially overlaps the terminal four Cs. Although the 3' terminal and penultimate Cs are not essential for virus launching, the generated viruses efficiently recovered these terminal nucleotides. In this work, we expressed RNA transcripts containing the entire 23 S RNA genome but incapable of generating the virus because of the presence of non-viral extra sequences at the 3' ends. These transcripts could form complexes with p104 in vivo, and a detailed analysis indicated that the mismatched pair of purines as well as the third and fourth Cs from the viral 3' end was essential for this complex-forming activity. Given that 23 S RNA virus does not have genes for capsid proteins, the binding of p104 to the viral 3' end, in addition to the efficient 3' terminal repair, may play a crucial role in virus persistence by protecting and maintaining the correct viral 3' end in vivo.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Fujimura T, Esteban R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference