Reference: Abdelal AT, et al. (1977) Ornithine transcarbamylase from Salmonella typhimurium: purification, subunit composition, kinetic analysis, and immunological cross-reactivity. J Bacteriol 129(3):1387-96

Reference Help

Abstract


Ornithine transcarbamylase (OTCase) was purified to hemogeneity from a derepressed strain of Salmonella typhimurium. The optimal pH for enzyme activity is 8.0. The molecular weight of the enzyme was calculated to be 116,000, based on measurements of the sedimentation coefficient by sucrose gradient ultracentrifugation and the Stokes radius by gel filtration. Polyacrylamide gel electrophoresis of cross-linked OTCase in the presence of sodium dodecyl sulfate showed that the enzyme is composed of three identical subunits. The molecular weight of the monomer was determined to be 39,000. Steady-state kinetics indicate that the reaction mechanism is sequential. The limiting Michealis constants for carbamylphosphate and ornithine were determined to be 0.06 and 0.2 mM, respectively. The dissociation constant for carbamylphosphate was 0.02 mM. Product and dead-end inhibition patterns are consistent with an ordered Bi Bi mechanism, in which carbamylphosphate is the first substrate added and phosphate is the last product released. OTCase activity was inhibited by arginine, but relatively high concentrations were required for significant inhibition. The inhibition by arginine might be physiologically significant in the regulation of carbamlphosphate utilization; a single carbamylphosphate synthetase is responsible for the synthesis of carbamylphosphate for both arginine and pyrimidines in S. typhimurium and the inhibition by argine might serve to divert carbamlphosphate to the synthesis of pyrimidines when arginine is present at high concentrations. The crossreaction of OTCases from different microorganisms with purified antibodies raised against the homogeneous OTCase from S. typhimurium was investigated. The results of immunotitration and immunodiffusion experiments revealed a high degree of identity between the enzymes form S. typhimurium and Esherichia coli B and W. In these three cases, a single gen (argl) encodes OTCase. Wild-type E. coli K-12 and strain 3000 X 111, which carry two OTCase genes (argI, argF), also revealed similar cross-reactivity, supporting the hypothesis that argF is the product of a relatively recent duplication. The activity of OTCase from Bacillus subtilis was partially inhibited by antibodies against the enzyme from S. typhimurium, indicating unusual conservation of primary structure among widely different taxonomic groups. OTCase from Saccharomyces cerevisiae, whose molecular weight and primary structure are similar to those of the enzyme from S. typhimurium, was without detectable cross-reactivity.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Abdelal AT, Kennedy EH, Nainan O
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference