Reference: Hardie DG (2004) AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Med Sci Sports Exerc 36(1):28-34

Reference Help

Abstract


The finding that AMP-activated protein kinase (AMPK) was activated by exercise in skeletal muscle, reported by Winder and Hardie in 1996, provided the first hint that this signaling pathway might represent the elusive and long-sought system that was responsible for the metabolic changes associated with exercise. It triggered an increasing volume of research that has now largely vindicated this hypothesis although, in the usual manner of these things, it is not the whole story. As discussed in this article, it is becoming clear that the AMPK system is partly, but not entirely, responsible for the acute metabolic responses of muscle to acute exercise. It is particularly involved in the switch from the anaerobic metabolism of glycogen to oxidative metabolism of blood glucose and fatty acids. It also appears to be responsible for most, if not all, of the long-term metabolic adaptations to aerobic exercise (i.e., to endurance training), particularly the up-regulation of mitochondrial content and oxidative metabolism. Interestingly, this role is a reflection of the evolutionary origins of the kinase, because the homolog of AMPK in a single-celled eukaryote, the brewer's yeast Saccharomyces cerevisiae, is also involved in the switch from anaerobic to aerobic metabolism.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Hardie DG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence