Reference: Baker RT, et al. (1992) Ubiquitin-specific proteases of Saccharomyces cerevisiae. Cloning of UBP2 and UBP3, and functional analysis of the UBP gene family. J Biol Chem 267(32):23364-75

Reference Help

Abstract


In eukaryotes, both natural and engineered ubiquitin (Ub) fusions to itself or other proteins are cleaved by processing proteases after the last (Gly76) residue of ubiquitin. YUH1 and UBP1, the genes for two ubiquitin-specific proteases of the yeast Saccharomyces cerevisiae, have been cloned previously and shown to encode nonhomologous proteins. Using an Escherichia coli-based genetic screen, we have isolated two other yeast genes for ubiquitin-specific proteases, named UBP2 and UBP3. Ubp2 (1,264 residues), Ubp3 (912 residues), and the previously cloned Ubp1 (809 residues) are largely dissimilar except for two short regions containing Cys and His which encompass their putative active sites. Neither of these proteases has sequence similarities to Yuh1. Both Ubp2 and the previously identified Ubp1 cleave in vitro at the C terminus of the ubiquitin moiety in natural and engineered fusions irrespective of their size, poly-Ub being the exception. However, both Ubp1 and Ubp2 are also capable of cleaving poly-Ub when coexpressed with it in E. coli, suggesting that such cleavage is largely cotranslational. Although inactive in E. coli extracts, Ubp3 was active with all of the tested ubiquitin fusions except poly-Ub when coexpressed with them in E. coli. Null yuh1 ubp1 ubp2 ubp3 quadruple mutants are viable and retain the ability to deubiquitinate ubiquitin fusions, indicating the presence of at least one more ubiquitin-specific processing protease in S. cerevisiae.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Baker RT, Tobias JW, Varshavsky A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference