Reference: Hodgins RR, et al. (1992) Expression of a ubiquitin derivative that conjugates to protein irreversibly produces phenotypes consistent with a ubiquitin deficiency. J Biol Chem 267(13):8807-12

Reference Help

Abstract


Ubiquitin (Ub) exists in a dynamic equilibrium between the free form and the conjugated form. This equilibrium is maintained and regulated through the antagonistic actions of the conjugation system and a class of enzymes referred to collectively as the Ub-protein hydrolases. Using a previously described epitope-tagged Ub approach (Ellison, M., and Hochstrasser, M. (1991) J. Biol. Chem. 266, 21150-21157) we show here that a single amino acid substitution at the carboxyl terminus of Ub (Gly-76 to Ala-76) results in a derivative of Ub (UbA-76) that becomes irreversibly conjugated to protein when expressed in the yeast Saccharomyces cerevisiae, producing a profound effect on the Ub-conjugate equilibrium. The major target of UbA-76 conjugation is itself (and presumably wild-type Ub) producing unanchored chains at the expense of the free form. Unsurprisingly, the expression of UbA-76 results in yeast phenotypes that would be expected in situations of Ub deprivation. Such cells show slow growth characteristics and sensitivity to various forms of environmental stress and to ultraviolet light. In view of these findings, the expression of UbA-76 in higher organisms may represent a convenient epigenetic strategy for examining the physiological consequences of Ub deprivation or Ub-protein hydrolase disfunction in living cells without the need for gene disruption or replacement. The observation that UbA-76 couples to itself irreversibly also provides an effective tool for elucidating the role of Ub as the proteolytic signal.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hodgins RR, Ellison KS, Ellison MJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference