Reference: Brautigan DL, et al. (1977) Multiple low spin forms of the cytochrome c ferrihemochrome. EPR spectra of various eukaryotic and prokaryotic cytochromes c. J Biol Chem 252(2):574-82

Reference Help

Abstract


1. Despite the same methionine-sulfur:heme-iron:imidazole-nitrogen hemochrome structure observed by x-ray crystallography in four of the seven c-type eukaryotic and prokaryotic cytochromes examined, and the occurrence of the characteristic 695 nm absorption band correlated with the presence of a methionine-sulfur:heme-iron axial ligand in all seven proteins, they fall into two distinct classes on the basis of their EPR and optical spectra. The horse, tuna, and bakers' yeast iso-1 cytochromes c have a predominant neutral pH EPR form with g1=3.06, g2=2.26, and g3=1.25, while the bakers' yeast iso-2 and Euglena cytochromes c, the Rhodospirillum rubrum cytochrome c2, and the Paracoccus denitrificans cytochrome c550 all have a predominant neutral pH EPR form with g1=3.2, g2=2.05, and g3=1.39. The ferricytochromes with g1=3.06 have a B-Q splitting that is approximately 150 cm-1 larger than the ferricytochromes with g1=3.2. 2. Each of the cytochromes displays up to four low spin EPR forms that are in pH-dependent equilibrium and can all be observed at near neutral pH. As the pH is raised the predominant neutral pH form is converted into two forms with g1=3.4 and g1=3.6, identified by comparsion with model compounds and other heme proteins as epsilon-amino:heme-iron:imidazole and bis-epsilon-amino:heme-iron ferrihemochromes, respectively. 3. The pK for the conversion of the predominant neutral pH EPR form into the alkaline pH forms is the same as the pK for the disappearance of the 695 nm absorption band for the cytochromes, even though these pK values range over 2 pH units. This confirms that the g1=3.06 and g1=3.2 forms contain the methionine-sulfur:heme-iron axial ligand while the g1=3.4 and the g1=3.6 forms do not. 4. At extremes of pH, the horse and bakers' yeast iso-1 proteins display several high and low spin forms that are identified, showing that a variety of protein-derived ligands will coordinate to the heme iron including methionine and cysteine sulfur, histidine imidazole, and lysine epsilon-amine. 5. The spectrum of horse cytochrome c with added azide, cyanide, hydroxide, or imidazole as axial ligands has also been examined. 6. From a comparison of the EPR and optical spectral characteristics of these groups of cytochromes with model compounds, it is suggested that the difference between them is due to a change in the hydrogen bonding or perhaps even in the protonation of N-1 of the heme iron-bound histidine imidazole.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Brautigan DL, Feinberg BA, Hoffman BM, Margoliash E, Preisach J, Blumberg WE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference