Reference: Cowart LA, et al. (2003) Roles for sphingolipid biosynthesis in mediation of specific programs of the heat stress response determined through gene expression profiling. J Biol Chem 278(32):30328-38

Reference Help

Abstract


Previous studies have demonstrated roles for de novo production of sphingolipids in Saccharomyces cerevisiae in the regulation of the transient cell cycle arrest and nutrient permease degradation associated with the heat stress response, suggesting multiple functions for yeast sphingolipids in this response. We, therefore, sought to determine the generalized involvement of sphingolipids in the heat stress response by using microarray hybridization of RNA isolated from heat-stressed cultures of the mutant strain lcb1-100, which is unable to produce sphingolipids in response to heat. Approximately 70 genes showed differential regulation during the first 15 min of heat stress in the lcb1-100 strain compared with the wild type strain, indicating a requirement for de novo sphingolipid biosynthesis for proper regulation of these genes during heat stress. Grouping these genes into functional categories revealed several pathways, including some in which sphingolipids were previously suspected to play a role, such as stress response pathways and cell cycle regulation. Hierarchical clustering analysis revealed sphingolipid involvement in regulation of tRNA synthesis and metabolic genes and transporters. Additionally, the microarray results demonstrated novel sphingolipid involvement in transcriptional regulation of pathways of translation and cell wall organization and biogenesis. Our results demonstrate a broad-reaching effect of sphingolipids in the yeast heat stress response and suggest that the mechanism of sphingolipid involvement in several cellular pathways occurs via sphingolipid-mediated regulation of message levels.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Cowart LA, Okamoto Y, Pinto FR, Gandy JL, Almeida JS, Hannun YA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference