Reference: Miyajima A (2002) [Functional analysis of yeast homologue gene associated with human DNA helicase causative syndromes]. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku 53-74

Reference Help

Abstract


Proteins having DNA helicase activity play very important roles in many processes involving DNA workings such as replication, repair, and recombination. In this decade, many DNA helicase genes have been cloned as the causative genes of human recessive heredity diseases. These are the causative genes for Xeroderma pigmentosum (XPB and XPD), Cockayne syndrome (CSB), diffuse collagen disease (Ku80), alpha-thalassmia (ATR-X), Bloom syndrome (BLM), Werner syndrome (WRN) and Rothmund-Thomson syndrome (RTS). The yeast homologue genes of these human DNA helicase genes exist. S. cerevisiae RAD25/SSL2, RAD3, RAD26, YKU80/HDF2 and RAD54 are the homologue for XPB/ERCC3, XPD/ERCC2, CSB/ERCC6, Ku80/XRCC5 and ATR-X/HX2, respectively. E coli. recQ gene and S. cerevisiae SGS1 are the homologue for all BLM, WRN and RTS. A search of whole genome of S. cerevisiae revealed that SGS1 is the sole homologue of recQ in S. cerevisiae. Thus it seems likely that SGS1 is a functional homologue of one or several human RecQ family genes. Many basic or essential functions are well conserved in the cells from lower eukaryotic to higher mammalian. The functional analysis in yeast could make an useful insight for the human homologue. To clarify the functions of S. cerevisiae Sgs1 and to get an insight into the functions of Blm, Wrn and Rts, in this study, we analyzed the phenotype of sgs1 disruptant and in detail the cause of the poor sporulation phenotype of sgs1 disruptants in relation to meiotic processes including meiotic recombination. The poor sporulation of sgs1 disruptants was complemented with a mutated SGS1 gene encoding a protein lacking DNA helicase activity; however, the mutated gene could suppress neither the sensitivity of sgs1 disruptants to methyl methanesulfonate (MMS) and hydroxyurea nor the mitotic hyperrecombination phenotype of sgs1 disruptants. The N-terminal 1-45 amino acid region and 698-1195 amino acid region of Sgs1, which including helicase domain and C-terminal RecQ conserved region with helicase activity, were required for complementation of MMS sensitivity and suppression of hyperrecombination of sgs1 disruptants in mitotic growth. The 126-400 and 596-1195 amino acid regions of Sgs1 were required for complementation of poor sporulation and of reduced meiotic functions. These regions required for the mitotic or meiotic functions of Sgs1 were well overlapped with the interaction regions of Top3 and Top2. Some of these results might explain the mechanism of the symptom of RecQ-related syndromes.

Reference Type
Journal Article | Review
Authors
Miyajima A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference