Reference: Chang Q, et al. (2003) Aldo-keto reductases as modulators of stress response. Chem Biol Interact 143-144:325-32

Reference Help

Abstract


Human aldose reductase (AKR1B1) has been implicated as a factor in the pathogenesis of diabetic complications. However, little is known about the physiological role of this enzyme or of related aldo-keto reductases in human tissues. In mammalian systems, a gene knock out approach is often employed as an experimental strategy to probe for gene function. However, in the murine system, phenotypic characterization of an aldose reductase (AKR1B3) knock out is likely to be complicated due to functional compensation by redundant AKRs including AKRs 1A (aldehyde reductase), 1B7 (FR-1) and 1B8 (MVDP). As an alternate strategy, we are examining the budding yeast Saccharomyces cerevisiae as a model system for a functional genomics study of AKRs. A distinct advantage of this system centers on the ability to readily ablate multiple targeted genes in a single strain. In addition to providing insights into functional redundancy, this system allows us to use a genetic approach to study possible effector pathways associated with one or more individual genes. Yeast open reading frames (ORFs) encoding AKRs with functional similarity to human aldose reductase (AKR1B1) were identified by BLAST analysis and were functionally validated by studies of recombinant proteins. By ablating three of the yeast AKR genes most functionally similar to AKR1B1, we have created a unique strain of S. cerevisiae that shows enhanced sensitivity to stress. Ongoing studies with oligonucleotide arrays show that the triple null strain has an altered transcription profile consistent with an enhanced stress response in comparison with the parental strain. These data indicate that AKR-null strains may provide new insights into signaling mechanisms involving this family of proteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Chang Q, Harter TM, Rikimaru LT, Petrash JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference