Reference: Kojima K, et al. (2002) The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Mol Plant Microbe Interact 15(12):1268-76

Reference Help

Abstract


Colletotrichum lagenarium, the causal agent of cucumber anthracnose, invades host plants by forming a specialized infection structure called an appressorium. In this fungus, the mitogen-activated protein kinase (MAPK) gene CMK1 is involved in several steps of the infection process, including appressorium formation. In this study, the goal was to investigate roles of other MAPKs in C. lagenarium. The MAPK gene MAF1, related to Saccharomyces cerevisiae MPK1 and Magnaporthe grisea MPS1, was isolated and functionally characterized. The maf1 gene replacement mutants grew normally, but there was a significant reduction in conidiation and fungal pathogenicity. The M. grisea mps1 mutant forms appressoria, but conidia of the C. lagenarium maf1 mutants produced elongated germ tubes without appressoria on both host plant and glass, on which the wild type forms appressoria, suggesting that MAF1 has an essential role in appressorium formation on inductive surfaces. On a nutrient agar, wild-type conidia produced elongated germ tubes without appressoria. The morphological phenotype of the wild type on the nutrient agar was similar to that of the maf1 mutants on inductive surfaces, suggesting repression of the MAF1-mediated appressorium differentiation on the nutrient agar. The cmk1 mutants failed to form normal appressoria but produced swollen, appressorium-like structures on inductive surfaces, which is morphologically different from the maf1 mutants. These findings suggest that MAF1 is required for the early differentiation phase of appressorium formation, whereas CMK1 is involved in the maturation of appressoria.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Kojima K, Kikuchi T, Takano Y, Oshiro E, Okuno T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence