Reference: Bhan A, et al. (2002) A duplication growth model of gene expression networks. Bioinformatics 18(11):1486-93

Reference Help

Abstract


Motivation: There has been considerable interest in developing computational techniques for inferring genetic regulatory networks from whole-genome expression profiles. When expression time series data sets are available, dynamic models can, in principle, be used to infer correlative relationships between gene expression levels, which may be causal. However, because of the range of detectable expression levels and the current quality of the data, the predictive nature of such inferred, quantitative models is questionable. Network models derived from simple rate laws offer an intermediate level analysis, going beyond simple statistical analysis, but falling short of a fully quantitative description. This work shows how such network models can be constructed and describes the global properties of the networks derived from such a model. These global properties are statistically robust and provide insights into the design of the underlying network.

Results: Several whole-genome expression time series data sets from yeast microarray experiments were analyzed using a Markov-modeling method (Dewey and Galas, FUNC: Integr. Genomics, 1, 269-278, 2001) to infer an approximation to the underlying genetic network. We found that the global statistical properties of all the resulting networks are similar. The overall structure of these biological networks is distinctly different from that of other recently studied networks such as the Internet or social networks. These biological networks show hierarchical, hub-like structures that have some properties similar to a class of graphs known as small world graphs. Small world networks exhibit local cliquishness while exhibiting strong global connectivity. In addition to the small world properties, the biological networks show a power law or scale free distribution of connectivities. An inverse power law, N(k) approximately k(-3/2), for the number of vertices (genes) with k connections was observed for three different data sets from yeast. We propose network growth models based on gene duplication events. Simulations of these models yield networks with the same combination of global graphical properties that we inferred from the expression data.

Reference Type
Comparative Study | Evaluation Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | Validation Study
Authors
Bhan A, Galas DJ, Dewey TG
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference