Reference: Cai Y, et al. (2002) Information-theoretic analysis of protein sequences shows that amino acids self-cluster. J Theor Biol 218(4):409-18

Reference Help

Abstract


We analyse for each of 20 amino acids X the statistics of spacings between consecutive occurrences of X within the well-characterized Saccharomyces cerevisiae genome. The occurrences of amino acids may exhibit near random, clustered or smoothed out behaviour, like one-dimensional stochastic processes along the protein chain. If amino acids are distributed randomly within a sequence, then they follow a Poisson process, and a histogram of the number of observations of each gap size would asymptotically follow a negative exponential distribution. The novelty of the present approach lies in the use of differential geometric methods to quantify information on sequencing of amino acids and groups of amino acids, via the sequences of intervals between their occurrences. The differential geometry arises from an information-theoretic distance function on the two-dimensional space of stochastic processes subordinate to gamma distributions-which latter include the random process as a special case. We find that maximum-likelihood estimates of parametric statistics show that all 20 amino acids tend to cluster, some substantially. In other words, the frequencies of short gap lengths tend to be higher and the variance of the gap lengths is greater than expected by chance. This may be because localizing amino acids with the same properties may favour secondary structure formation or transmembrane domains. Gap sizes of 1 or 2 are generally disfavoured, 1 strongly so. The only exceptions to this are Gln and Ser, as a result of poly(Gln) or poly(Ser) sequences. There are preferences for gaps of 4 and 7 that can be attributed to alpha -helices. In particular, a favoured gap of 7 for Leu is found in coiled coils. Our method contributes to the characterization of whole sequences by extracting and quantifying stable stochastic features.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Cai Y, Dodson CT, Doig AJ, Wolkenhauer O
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference