Reference: Thomann D, et al. (2002) Automatic fluorescent tag detection in 3D with super-resolution: application to the analysis of chromosome movement. J Microsc 208(Pt 1):49-64

Reference Help

Abstract


In this paper, we describe an algorithmic framework for the automatic detection of diffraction-limited fluorescent spots in 3D optical images at a separation below the Rayleigh limit, i.e. with super-resolution. We demonstrate the potential of super-resolution detection by tracking fluorescently tagged chromosomes during mitosis in budding yeast. Our biological objective is to identify and analyse the proteins responsible for the generation of tensile force during chromosome segregation. Dynamic measurements in living cells are made possible by green fluorescent protein (GFP)-tagging chromosomes and spindle pole bodies to generate cells carrying four fluorescent spots, and observe the motion of the spots over time using 3D-fluorescence microscopy. The central problem in spot detection arises with the partial or complete overlap of spots when tagged objects are separated by distances below the resolution of the optics. To detect multiple spots under these conditions, a set of candidate mixture models is built, and the best candidate is selected from the set based on chi2-statistics of the residuals in least-square fits of the models to the image data. Even with images having a signal-to-noise ratio (SNR) as low as 5-10, we are able to increase the resolution two-fold below the Rayleigh limit. In images with a SNR of 5-10, the accuracy with which isolated tags can be localized is less than 5 nm. For two tags separated by less than the Rayleigh limit, the localization accuracy is found to be between 10 and 20 nm, depending on the effective point-to-point distance. This indicates the intimate relationship between resolution and localization accuracy.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Thomann D, Rines DR, Sorger PK, Danuser G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Evidence Method Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence